Включение блока инструментов «Анализ данных» в Microsoft Excel

Анализ данных в Excel с примерами отчетов скачать

Включение блока инструментов «Анализ данных» в Microsoft Excel

Анализ данных в Excel предполагает сама конструкция табличного процессора. Очень многие средства программы подходят для реализации этой задачи.

Excel позиционирует себя как лучший универсальный программный продукт в мире по обработке аналитической информации. От маленького предприятия до крупных корпораций, руководители тратят значительную часть своего рабочего времени для анализа жизнедеятельности их бизнеса. Рассмотрим основные аналитические инструменты в Excel и примеры применения их в практике.

Одним из самых привлекательных анализов данных является «Что-если». Он находится: «Данные»-«Работа с данными»-«Что-если».

Средства анализа «Что-если»:

  1. «Подбор параметра». Применяется, когда пользователю известен результат формулы, но неизвестны входные данные для этого результата.
  2. «Таблица данных». Используется в ситуациях, когда нужно показать в виде таблицы влияние переменных значений на формулы.
  3. «Диспетчер сценариев». Применяется для формирования, изменения и сохранения разных наборов входных данных и итогов вычислений по группе формул.
  4. «Поиск решения». Это надстройка программы Excel. Помогает найти наилучшее решение определенной задачи.

Практический пример использования «Что-если» для поиска оптимальных скидок по таблице данных.

Другие инструменты для анализа данных:

  • группировка данных;
  • консолидация данных (объединение нескольких наборов данных);
  • сортировка и фильтрация (изменение порядка строк по заданному параметру);
  • работа со сводными таблицами;
  • получение промежуточных итогов (часто требуется при работе со списками);
  • условное форматирование;
  • графиками и диаграммами.

Анализировать данные в Excel можно с помощью встроенных функций (математических, финансовых, логических, статистических и т.д.).



Чтобы упростить просмотр, обработку и обобщение данных, в Excel применяются сводные таблицы.

Программа будет воспринимать введенную/вводимую информацию как таблицу, а не простой набор данных, если списки со значениями отформатировать соответствующим образом:

  1. Перейти на вкладку «Вставка» и щелкнуть по кнопке «Таблица».
  2. Откроется диалоговое окно «Создание таблицы».
  3. Указать диапазон данных (если они уже внесены) или предполагаемый диапазон (в какие ячейки будет помещена таблица). Установить флажок напротив «Таблица с заголовками». Нажать Enter.

К указанному диапазону применится заданный по умолчанию стиль форматирования. Станет активным инструмент «Работа с таблицами» (вкладка «Конструктор»).

Составить отчет можно с помощью «Сводной таблицы».

  1. Активизируем любую из ячеек диапазона данных. Щелкаем кнопку «Сводная таблица» («Вставка» – «Таблицы» – «Сводная таблица»).
  2. В диалоговом окне прописываем диапазон и место, куда поместить сводный отчет (новый лист).
  3. Открывается «Мастер сводных таблиц». Левая часть листа – изображение отчета, правая часть – инструменты создания сводного отчета.
  4. Выбираем необходимые поля из списка. Определяемся со значениями для названий строк и столбцов. В левой части листа будет «строиться» отчет.

Создание сводной таблицы – это уже способ анализа данных. Более того, пользователь выбирает нужную ему в конкретный момент информацию для отображения. Он может в дальнейшем применять другие инструменты.

Анализ «Что-если» в Excel: «Таблица данных»

Мощное средство анализа данных. Рассмотрим организацию информации с помощью инструмента «Что-если» – «Таблица данных».

Важные условия:

  • данные должны находиться в одном столбце или одной строке;
  • формула ссылается на одну входную ячейку.

Процедура создания «Таблицы данных»:

  1. Заносим входные значения в столбец, а формулу – в соседний столбец на одну строку выше.
  2. Выделяем диапазон значений, включающий столбец с входными данными и формулой. Переходим на вкладку «Данные». Открываем инструмент «Что-если». Щелкаем кнопку «Таблица данных».
  3. В открывшемся диалоговом окне есть два поля. Так как мы создаем таблицу с одним входом, то вводим адрес только в поле «Подставлять значения по строкам в». Если входные значения располагаются в строках (а не в столбцах), то адрес будем вписывать в поле «Подставлять значения по столбцам в» и нажимаем ОК.

Анализ предприятия в Excel: примеры

Для анализа деятельности предприятия берутся данные из бухгалтерского баланса, отчета о прибылях и убытках. Каждый пользователь создает свою форму, в которой отражаются особенности фирмы, важная для принятия решений информация.

Для примера предлагаем скачать финансовый анализ предприятий в таблицах и графиках составленные профессиональными специалистами в области финансово-экономической аналитике. Здесь используются формы бухгалтерской отчетности, формулы и таблицы для расчета и анализа платежеспособности, финансового состояния, рентабельности, деловой активности и т.д.

Источник: https://exceltable.com/vozmojnosti-excel/analiz-dannyh-v-excel

Archie Goodwin

Включение блока инструментов «Анализ данных» в Microsoft Excel

Научимся строить линейную регрессионную модель с несколькими влияющими факторами в Эксель всего в несколько кликов с помощью встроенного Пакета анализа.

Это наиболее распространенный способ показать зависимость какой-то переменной от других, например, как зависит уровень ВВП от величины иностранных инвестиций или от кредитной ставки Нацбанка или от цен на ключевые энергоресурсы.

Моделирование позволяет показать величину этой зависимости (коефициенты), благодаря которым можно делать непосредственно прогноз и осуществлять какое-то планирование, опираясь на эти прогнозы.

Также, опираясь на регрессионный анализ, можно принимать управленческие решения направленные на стимулирование приоритетных причин влияющих на конечный результат, собственно модель и поможет выделить эти приоритетные факторы.

Общий вид модели линейной регрессии:

Y=a0+a1x1+…+akxk

где a — параметры (коэффициенты) регрессии, x — влияющие факторы, k — количество факторов модели.

Исходные данные

Среди исходных данных нам необходим некий набор данных, который бы представлял из себя несколько последовательных или связанных между собой величин итогового параметра Y (например, ВВП) и такое же количество величин показателей, влияние которых мы изучаем (например, иностранные инвестиции).

На рисунке выше показана таблица с этими самыми исходными данными, в качестве Y выступает показатель экономически активного населения, а количество предприятий, размер инвестиций в капитал и доходов населения – это влияющие факторы, то бишь иксы.

По рисунку также можно сделать ошибочный вывод, что речь в моделировании может идти только о динамических рядах, то есть моментным рядам зафиксированных последовательно во времени, но это не так, с тем же успехом можно моделировать и в разрезе структуры, например, величины указанные в таблице могут быть разбиты не годам, а по областям.

Для построения адекватных линейных моделей желательно чтобы исходные данные не имели сильных перепадов или обвалов, в таких случаях желательно проводить сглаживание, но о сглаживании поговорим в следующий раз.

Пакет анализа

Параметры модели линейной регрессии можно рассчитать и вручную с помощью Метода наименьших квадратов (МНК), но это довольно затратно по времени. Немного быстрее это можно посчитать по этому же методу с помощью применения формул в Excel, где сами вычисления будет делать программа, но проставлять формулы все равно придется вручную.

В Excel есть надстройка Пакет анализа, который является довольно мощным инструментом в помощь аналитику. Этот инструментарий, помимо всего прочего, умеет рассчитывать параметры регрессии, по тому же МНК, всего в несколько кликов, собственно, о том как этим инструментом пользоваться дальше и пойдет речь.

Активируем Пакет анализа

По умолчанию эта надстройка отключена и в меню вкладок вы ее не найдете, поэтому пошагово рассмотрим как ее активировать.

В эксель, слева вверху, активируем вкладку Файл, в открывшемся меню ищем пункт Параметры и кликаем на него.

В открывшемся окне, слева, ищем пункт Надстройки и активируем его, в этой вкладке внизу будет выпадающий список управления, где по умолчанию будет написано Надстройки Excel, справа от выпадающего списка будет кнопка Перейти, на нее и нужно нажать.

Всплывающее окошко предложит выбрать доступные надстройки, в нем необходимо поставить галочку напротив Пакет анализа и заодно, на всякий случай, Поиск решения (тоже полезная штука), а затем подтвердить выбор кликнув по кнопочке ОК.

Инструкция по поиску параметров линейной регрессии с помощью Пакета анализа

После активации надстройки Пакета анализа она будет всегда доступна во вкладке главного меню Данные под ссылкой Анализ данных

В активном окошке инструмента Анализа данных из списка возможностей ищем и выбираем Регрессия

Далее откроется окошко для настройки и выбора исходных данных для вычисления параметров регрессионной модели. Здесь нужно указать интервалы исходных данных, а именно описываемого параметра (Y) и влияющих на него факторов (Х), как это на рисунке ниже, остальные параметры, в принципе, необязательны к настройке.

После того как выбрали исходные данные и нажали кнопочку ОК, Excel выдает расчеты на новом листе активной книги (если в настройках не было выставлено иначе), эти расчеты имеют следующий вид:

Ключевые ячейки залил желтым цветом именно на них нужно обращать внимание в первую очередь, остальные параметры значимость также немаловажны, но их детальный разбор требует пожалуй отдельного поста.

Итак, 0,865 – это R2 – коэффициент детерминации, показывающий что на 86,5% расчетные параметры модели, то есть сама модель, объясняют зависимость и изменения изучаемого параметра – Y от исследуемых факторов – иксов.

Если утрировано, то это показатель качества модели и чем он выше тем лучше. Понятное дело, что он не может быть больше 1 и считается неплохо, когда R2 выше 0,8, а если меньше 0,5, то резонность такой модели можно смело ставить под большой вопрос.

Теперь перейдем к коэффициентам модели:
2079,85 – это a0 – коэффициент который показывает какой будет Y в случае, если все используемые в модели факторы будут равны 0, подразумевается что это зависимость от других неописанных в модели факторов;
-0,0056a1 – коэффициент, который показывает весомость влияния фактора x1 на Y, то есть количество предприятий в пределах данной модели влияет на показатель экономически активного населения с весом всего -0,0056 (довольно маленькая степень влияния). Знак минус показывает что это влияние отрицательно, то есть чем больше предприятий, тем меньше экономически активного населения, как бы это ни было парадоксальным по смыслу;
-0,0026a2 – коэффициент влияния объема инвестиций в капитал на величину экономически активного населения, согласно модели, это влияние также отрицательно;
0,0028a3– коэффициент влияния доходов населения на величину экономически активного населения, здесь влияние позитивное, то есть согласно модели увеличение доходов будет способствовать увеличению величины экономически активного населения.

Соберем рассчитанные коэффициенты в модель:

Y = 2079,85 – 0,0056×1 – 0,0026×2 + 0,0028×3

Собственно, это и есть линейная регрессионная модель, которая для исходных данных, используемых в примере, выглядит именно так.

Расчетные значения модели и прогноз

Как мы уже обсуждали выше, модель строится не только чтобы показать величину зависимостей изучаемого параметра от влияющих факторов, но и чтобы зная эти влияющие факторы можно было делать прогноз.

Сделать этот прогноз довольно просто, нужно просто подставить значения влияющих факторов в место соответствующих иксов в полученное уравнение модели.

На рисунке ниже эти расчеты сделаны в экселе в отдельном столбце.

Фактические значения (те что имели место в реальности) и расчетные значения по модели на этом же рисунке отображены в виде графиков, чтобы показать разность, а значит погрешность модели.

Повторюсь еще раз, для того чтобы сделать прогноз по модели нужно чтобы были известные влияющие факторы, а если речь идет о временном ряде и соответственно прогнозе на будущее, например, на следующий год или месяц, то далеко не всегда можно узнать какие будут влияющие факторы в этом самом будущем. В таких случаях, нужно еще делать прогноз и для влияющих факторов, чаще всего это делают с помощью авторегрессионной модели – модели, в которой влияющими факторами являются сам исследуемый объект и время, то есть моделируется зависимость показателя от того каким он был в прошлом.

Как строить авторегрессионную модель рассмотрим в следующей статье, а сейчас предположим, что, то какие будут величины влияющих факторов в будущем периоде (в примере 2008 год) нам известно, подставляя эти значения в расчеты мы получим наш прогноз на 2008 год.

Источник: http://archie-goodwin.net/load/specializirovannye_blogi/ms_office/linejnaja_regressija_v_excel_cherez_analiz_dannykh/28-1-0-391

Анализ данных в Microsoft Excel

Включение блока инструментов «Анализ данных» в Microsoft Excel

Основная особенность  регрессионного анализа: при его  помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы  регрессионного анализа.

  1. Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.
  2. Определение зависимых и независимых (объясняющих) переменных.
  3. Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.
  4. Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).
  5. Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)
  6. Оценка точности регрессионного анализа.
  7. Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.
  8. Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных.

Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, – к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии, оценка неизвестных значений зависимой переменной.

Установление  формы зависимости.

Характер и форма зависимости  между переменными могут образовывать следующие разновидности регрессии:

  • положительная линейная регрессия (выражается в равномерном росте функции);
  • положительная равноускоренно возрастающая регрессия;
  • положительная равнозамедленно возрастающая регрессия;
  • отрицательная линейная регрессия (выражается в равномерном падении функции);
  • отрицательная равноускоренно убывающая регрессия;
  • отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности  обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных  формах регрессии.

Определение функции  регрессии.

Вторая задача сводится к  выяснению действия на зависимую  переменную главных факторов или  причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных  значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

  • Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.
  • Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем  подстановки в уравнение регрессии  найденных оценок параметров значений независимых переменных. Результат решенияуравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые  предположения, на которые опирается  регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между  рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков. Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммами остатков.

При использовании регрессионного анализа следует учитывать его  основное ограничение. Оно состоит  в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень  связи между переменными путем  вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения  переменная Y выражается через константу  a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент – коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток – это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис “Пакет анализа” и инструмент анализа “Регрессия”. Задаем входные интервалы X и Y.

Входной интервал Y – это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X – это диапазон независимых данных, которые необходимо проанализировать.

Число входных диапазонов должно быть не больше 16.

На выходе процедуры в  выходном диапазоне получаем отчет, приведенный в таблице 8.3а – 8.3в.

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R0,998364
R-квадрат0,99673
Нормированный R-квадрат0,996321
Стандартная ошибка0,42405
Наблюдения10

Сначала рассмотрим верхнюю  часть расчетов, представленную в таблице 8.3а, – регрессионную статистику.

Величина R-квадрат, называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].

В большинстве случаев  значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата, близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень  хорошей подгонке регрессионной  прямой к исходным данным.

множественный R – коэффициент множественной корреляции R – выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном  анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
КоэффициентыСтандартная ошибкаt-статистика
Y-пересечение2,6945454550,331768788,121757129
Переменная X 12,3054545450,0466863449,38177965
* Приведен усеченный вариант  расчетов

Теперь рассмотрим среднюю  часть расчетов, представленную в таблице 8.3б. Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем  записать уравнение регрессии таким  образом:

Y= x*2,305454545+2,694545455

Направление связи между  переменными определяется на основании  знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии – положительный, связь зависимой  переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии – отрицательный, связь зависимой  переменной с независимой является отрицательной (обратной).

В таблице 8.3в. представлены результаты вывода остатков. Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента “Регрессия” активировать чекбокс “Остатки”.

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
НаблюдениеПредсказанное YОстаткиСтандартные остатки
19,610909091-0,610909091-1,528044662
27,305454545-0,305454545-0,764022331
311,916363640,0836363640,209196591
414,221818180,7781818181,946437843
516,527272730,4727272731,182415512
618,832727270,1672727270,418393181
721,13818182-0,138181818-0,34562915
823,44363636-0,043636364-0,109146047
925,74909091-0,149090909-0,372915662
1028,05454545-0,254545455-0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остаткав нашем случае – 0,778, наименьшее – 0,043.

Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными на рис. 8.3.

Как видим, линия регрессии достаточно точно “подогнана” под значения исходных данных.

Следует учитывать, что рассматриваемый  пример является достаточно простым  и далеко не всегда возможно качественное построение регрессионной прямой линейного  вида.

 
Рис. 8.3.  Исходные данные и линия регрессии

Осталась нерассмотренной  задача оценки неизвестных будущих  значений зависимой переменной на основании  известных значений независимой  переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к  решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4.

Таблица 8.4. Результаты прогнозирования  переменной Y
xY(прогнозируемое)
1128,05455
1230,36
1332,66545
1434,97091
1537,27636
1639,58182

Таким образом, в результате использования регрессионного анализа  в пакете Microsoft Excel мы:

  • построили уравнение регрессии;
  • установили форму зависимости и направление связи между переменными – положительная линейная регрессия, которая выражается в равномерном росте функции;
  • установили направление связи между переменными;
  • оценили качество полученной регрессионной прямой;
  • смогли увидеть отклонения расчетных данных от данных исходного набора;
  • предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

Выводы

В этой части лекции мы рассмотрели  основные характеристики описательной статистики и среди них такие понятия, как среднее значение, медиана,максимум, минимум и другие характеристики вариации данных. Также было кратко рассмотрено понятие выбросов.

Рассмотренные в лекции характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

Источник: http://freepapers.ru/22/analiz-dannyh-v-microsoft-excel/172986.1054122.list1.html

Анализ данных и их оптимизация в Excel

Включение блока инструментов «Анализ данных» в Microsoft Excel

С помощью средств анализа «что если» в Microsoft Excel можно экспериментировать с различными наборами значений в одной или нескольких формулах для изучения всех возможных результатов. 

Формулы и функции в Excel автоматически пересчитывают результат при изменении содержимого ячеек, на которые имеются ссылки в данной формуле или функции. Другими словами, можно отвечать на вопросы типа «что-если». Например, при анализе финансовой функции ПЛТ ответить на вопрос, что будет, если первый взнос при получении ипотечной ссуды будет составлять не 20% от цены, а 15%. 

Итак, проиллюстрируем проведение анализа данных «что-если» на примере работы функции ПЛТ, которая вычисляет величину выплаты по ссуде на основе постоянных выплат и постоянной процентной ставки. 

Вызов функции имеет вид: ПЛТ (ставка;кпер;пс;бс;тип) 

Ставка –  процентная ставка по ссуде. 

Кпер – общее число выплат по ссуде. 

Пс – приведенная к текущему моменту стоимость или общая сумма, которая на текущий момент равноценна ряду будущих платежей, называемая также основной суммой. 

Бс – значение будущей стоимости, т. е. желаемого остатка средств после последней выплаты. Если этот аргумент опущен, предполагается, что он равен 0 (например, значение «бс» для займа равно 0). 

Тип – число 0 (ноль) или 1, обозначающее, когда должна производиться выплата. 

Рассмотрим пример использования функции ПЛТ в Exceel.

Итак, требуется определить ежемесячные выплаты по займу в 20 000 руб., взятому на 16 месяцев под 11% годовых. 

Для решения задачи выделяем ячейку на рабочем листе Excel (в нашел случаи ячейка А1) и в строку формул вводим следующее выражение: =ПЛТ(11%/12; 16; 20000) (Рис.1.1)

Рис. 1.1 –  Ввод формулы Excel. 

Нажав на клавишу  Enter   , мы получаем величину ежемесячных выплат по ссуде, которая составит -1350 руб. Рис.1.2

Рис. 1.2 – Величина ежемесячной выплаты по ссуде.

При ином значении банковской учетной ставки, следует сделать исправления в ранее введенной функции в Excel.  

Другой подход к вычислению функции ПЛТ методом “что если” в Excel проиллюстрирован на Рис. 1.3. Функция ПЛТ определена в ячейке D7, а значения аргументов записаны в ячейках D2, D3 и D4.

Для получения значения функции при новых значениях аргумента достаточно внести соответствующие изменения в исходные данные. В этом случаи в строке формул на рис.1.

3 мы вводим не конкретное значение аргумента, а ссылку ни соответствующую ячейку.  

Рис. 1.3 – Пример расчета Excel, в котором исходные данные в отдельные ячейки 

При изменении любых значений на рис.3 результаты расчета автоматически обновляются в разделе Результат расчета.  

Вывод: Рассмотренный выше примеры показывают, что размещение исходных данных в отдельные ячейки упрощает анализ зависимости выходного результата от изменения исходных данных с использованием анализа данных “Что если” в Exceel. 

Подбор параметра в Excel

При вычислении различных функций возникает вопрос: «Каким должно быть значение определенного аргумента функции, чтобы функция возвратила заданный результат?».  

Для решения такой задач в состав Excel включен специальный инструмент — Подбор параметра. С помощью этого инструмента определяется значение в одной ячейке исходных данных, которое требуется для получения требуемого значения в ячейке результата. 

Из расчетной части рис.1.3  видно, что при заданных исходных данных требуется ежемесячно выплачивать по 1350 руб. для погашения займа. Предположим, что по каким-то причинам кредитор имеется возможность выплачивать не более 1200 руб. в месяц. Спрашивается, какую максимальную величину ссуды может он запросить, если все прочие условия сохраняются? 

Для решения этой задачи выберем команду Данные > Анализ «что если» > Подбор параметра (рис. 2.1). В верхнем поле этого окна указывается ссылка на ячейку D7, в которой устанавливается желаемый результат (в нашем случае – это -1200 руб). В нижнее поле диалогового окна вставляется ссылка на ячейку, в которой хранится значение искомого параметра, т.е. D4.

Рис. 2.1 – Диалоговое окно Подбор параметра в Excel

При нажатии клавиши ОК мы получим максимальную сумму займа, при условии выплаты ежемесячно 1 200 руб. Рис.2.2

Рис. 2.2 – Максимальная величина займа 17 783 руб. 

Вывод: Выполнение анализа «что-если» в Excel обеспечивает достаточно оперативную оценку влияния того или иного аргумента на результат вычисления. 

Проведение анализа на основе таблицы подстановки в Excel

Таблицы подстановки для одной переменной.  

В Excel предусмотрено средство, позволяющее без особых усилий строить таблицу подстановки для одной и двух переменных. 

Рассмотрим способ построения так называемой таблицы подстановки для одной переменной, используя приведенный выше пример вычисления функции ПЛТ. 

Для построения таблицы подстановки необходимо подготовить исходные данные рис.3.1

Рис. 3.1 – Подготовка исходных данных для построения таблицы подстановки Excel

В ячейке G3 этой таблицы определена точно такая же формула, как и в ячейке D7. Первый столбец таблицы подстановки заполнен значениями аргумента функции ПЛТ, в зависимости от которого требуется проанализировать поведение финансовой функции (в нашем случае от 11 до 15%). 

Чтобы получить соответствующие значения функции во втором столбце, нужно выделить диапазон ячеек — F3:G7, и после этого выполнить команду меню Данные > Анализ «что если» > Таблица данных… . В результате появляется диалоговое окно этой команды (рис. 3.2). 

Это окно служит для задания абсолютного адреса рабочей ячейки, на которую ссылается расчетная функция (ячейка D2). В случае вертикальной организации таблицы подстановки ссылку на рабочую ячейку необходимо ввести в поле Подставлять значения по строкам.

Рис. 3.2. – Диалоговое окно Таблица подстановки в Excel

После щелчка на кнопке  ОК   столбец результатов таблицы подстановки будет заполнен (рис. 3.3).

Рис.3.3. Таблица подстановки для одной переменной в Excel

Таблица подстановки для двух переменных в Excel.  

Более богатыми возможностями для анализа обладают таблицы подстановки для двух переменных, позволяющие изучать поведение функции при изменении одновременно двух ее аргументов. 

Поставим задачу проследить характер изменения функции ПЛТ в зависимости от изменения годовой процентной ставки и срока погашения ссуды.  

Для начала, подготовить исходные данные на рабочем листе, как это показано на рис. 3.4 

В ячейке F2 таблицы подстановки определена точно такая же формула, как и в ячейке D7 в Excel. Первый столбец таблицы подстановки заполнен значениями годовой процентной ставки. Первая строка таблицы заполнена значениями срока вклада. Требуется в зависимости от изменения этих двух аргументов проанализировать поведение финансовой функции.

Рис. 3.4 –  Подготовка исходных данных для построения таблицы подстановки Excel

Чтобы получить значения функции в таблице, выделяем диапазон ячеек F2:J7, который содержит исходные значения процентных ставок, исходные значения срока погашения ссуды и расчетную функцию. После этого нужно выполнить команду меню Данные > Анализ «что если» > Таблица подстановки. В результате появится диалоговое окно (рис. 3.5).

Рис. 3.5 Диалоговое окно Excel Таблица подстановки 

Это окно служит для задания абсолютных адресов ячеек, на которые ссылается расчетная функция. После щелчка на кнопке  ОК  столбец результатов таблицы подстановки будет заполнен (рис.3.6).

Рис. 3.6 Расчетные значения таблицы подстановки Excelдля двух переменных 

Вывод: С помощью таблицы подстановки выявляются характерные тенденции поведения функции в зависимости от изменения определенных параметров или аргументов. 

Проведение графического анализа в Excel. 

Графическое представление табличных данных, например в форме диаграммы, облегчает анализ функции, так как диаграмма отличается большей наглядностью. 

На рис. 3.7 и 3.8 представлены диаграммы, построенные на базе таблиц подстановки для одной-двух переменных соответственно. Так, для построения диаграммы для двух переменных выделим диапазон ячеек F3:J7 и выберем тип диаграммы «точечная». Затем следует отредактировать полученную диаграмму.  

Ежемесячные выплаты по ссуде

Рис. 3.7 Диаграмма excel, построенная на основе диапазона ячеек F3:G7 таблицы подстановки для одной переменной (см. рис. 3.3)

Поиск решения в Exceel

Существует достаточно широкий класс относительно сложных задач поиска оптимального решения, которые описываются системами уравнений с несколькими неизвестными и набором ограничений на решения. Для решения подобных задач весьма эффективным может оказаться средство Excel Поиск решения. 

Средство Поиск решения — это надстройка Excel. Для ее подключения следует выполнить команду меню Сервис > Надстройки. В появившемся диалоговом окне Надстройки нужно установить флажок опции Поиск решения. 

Характерные особенности задач, для решения которых предназначено данное средство, заключаются в следующем: 

имеется единственная цель, например максимизация прибыли, минимизация расходов и т.п.; 

имеются ограничения, выраженные в виде неравенств; 

имеются переменные, значения которых влияют на ограничения и оптимизируемую величину. 

Правильная формулировка ограничений — самая ответственная часть описания модели для поиска решения. Следует особенно внимательно следить за тем, чтобы задавать все объективно существующие ограничения. Неполнота описания ограничений приводит к неправильному решению. 

Следует различать линейные и нелинейные модели, поскольку для линейных моделей существуют быстрые и надежные методы поиска решения.  

Чтобы исключить использование общих более медленных методов для решения линейных задач, следует установить параметр Линейная модель в окне Параметры поиска решения. 

Решение задачи оптимизации. 

 Для пояснения принципа работы средства Поиск решения рассмотрим пример, используя данные таблицы на рис. 4.1.

Рис. 4.1 –  Таблица Excel для определения количества товаров, приносящих максимальную прибыль

Требуется определить, в каких количествах следует производить товары каждого вида, чтобы получить максимальную прибыль. 

Ячейка (Е7), в которую помещается ответ, называется целевой. Целевая ячейка содержит формулу, результат которой зависит от значений, содержащихся в других ячейках, называемых изменяемыми.  

Ограничения — это спецификации, которые применяются к целевой и изменяемым ячейкам для задания диапазона возможных значений. 

Предположим, что имеются следующие ограничения, которые необходимо учитывать при составлении плана выпуска продукции: 

общее число производимых товаров за отчетный период должно составлять ровно 1000 шт.; 

товар С пользуется наименьшим спросом, поэтому, как показал опыт, удается реализовать товар этого вида не более 140 шт.; 

на товары вида A, B, D имеются заказы соответственно на 50, 100 и 200 шт., которые необходимо выполнить. 

Для реализации процедуры поиска решения необходимо выполнить следующие действия. 

Ввести исходные данные, как это показано на рис. 4.1. 

  • Выполнить команду меню Сервис > Поиск решения, чтобы вызвать диалоговое окно Поиск решения (рис. 4.2) 
  • Установить курсор в поле Установить целевую ячейку диалогового окна и щелкнуть мышкой на целевой ячейке Е7 (рис. 4.2). 
  • Установить курсор в поле Изменяя ячейки диалогового окна и выделить диапазон изменяемых ячеек С3:С6. 
  • Установить курсор в поле Ограничения и щелкнуть на кнопке  Добавить . В появившееся диалоговое окно, показанное на рис. 4.3, вводить поочередно все ограничения (рис. 4.4). 
  • Щелкнуть на кнопке Выполнить диалогового окна Поиск решения. 

Результат поиска решения представлен на рис. 4.5. 

Рис. 4.2  – Диалоговое окно Поиск решений в Excel 

Рис 4.3 – Диалоговое отношение Добавление ограничений Excel

Рис. 4.4. – Введение ограничения Excel

После того как найдем оптимальное решение, мы можем выбрать одну из следующих возможностей: 

1) сохранить найденное решение; 

2) восстановить исходные значения в изменяемых ячейках; 

3) создать отчеты о процедуре поиска решения; 

4) щелкнуть на кнопке  Сохранить сценарий. Сохраненный сценарий может быть использован в средстве Диспетчер сценариев. 

Большинство задач, решаемых с помощью электронной таблицы Excel, предполагают нахождение искомого результата по известным исходным данным. Но в Excel есть инструменты, позволяющие решить и обратную задачу, подобрать исходные данные для получения желаемого результата. Одним из таких инструментов является Поиск решения, который особенно удобен для решения так называемых “задач оптимизации”.

Источник: http://ya-znau.ru/znaniya/zn/217

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.